Some New Details of the Copper-Hydrogen Peroxide Interaction

Laura Pecci. Gabriella Montefoschi, and Doriano Cavallini

Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Centro di Studio sulla Biologia Molecolare del CNR, Università di Roma "La Sapienza," Roma, Italy

Received May 2, 1997

The addition of neocuproine (NC) or bathocuproinedisulphonate at the end of the autooxidation of Cu^I in phosphate buffer, pH 7.4, regenerates almost entirely the O2 consumed. Other chelating agents assayed, including o-phenanthroline, cannot replace NC in promoting the O₂ formation. O₂ is also produced by adding NC to a mixture of CuII and H2O2. Concomitant with the O₂ evolution, the typical absorbance of the (NC)₂Cu^I complex appears to account for the complete reduction of Cu^{II} to Cu^I. It is concluded that the addition of H_2O_2 with Cu^{II} produces the equilibrium $Cu^{II}(O_2H)^- \leftrightarrow$ Cu^I·O₂H. Addition of NC shifts the equilibrium to the right side by binding Cu^I. The released O₂ ·- then reacts with the remaining CuII yielding, in the presence of NC, the net reaction of 4 NC + 2 Cu^{II} + $H_2O_2 \rightarrow 2$ $(NC)_2Cu^I + O_2 + 2H^+$. O_2 is also released in the absence of added NC provided the H2O2 concentration is increased. In these conditions the Cu^{II}(O₂H)⁻ complex undergoes other reactions leading to the copper-catalysed decomposition of H₂O₂. © 1997 Academic Press

Interaction of copper with H_2O_2 has been investigated in the past as a producer of oxygen reactive species known to induce extensive biological damages, comparable to those produced by the more popular iron Fenton reaction (1-5). Though most of the aspects of the Fenton and of the Cu-Fenton-like reactions are understood, some details remain to be elucitated. In a recent study on the copper catalysed oxidation of cysteine (6) we found that the presence of H_2O_2 , in mixtures where redox changes of copper were followed by the neocuproine (NC) assay, could induce a fast reducton of Cu^{II} to Cu^{I} except when the assay was performed at pH 4-4.5. On the basis of these findings we thought

Abbreviations: NC, neocuproine-HCl; OP, *o*-phenanthroline; EDTA, ethylenediaminetetracetic acid; DTPA, diethylenetriaminepentacetic acid; MOPS, 3-morpholinopropanesulfonic acid.

of interest to investigate further the mechanism of the H_2O_2 - Cu^{II} interaction in the presence and absence of neocuproine (NC). The preliminary results of this study are reported in this note.

MATERIALS AND METHODS

Catalase was purchased from Sigma Co. Chemicals were of the highest quality from Sigma, Fluka and Merck. Cuprous chloride was dissolved in N_2 -saturated CH_3CN immediately before use. Quantitative determination of the Cu^I -neocuproine chelate was performed at 454 nm using $\epsilon=7,950~M^{-1}~cm^{-1}$ (7). H_2O_2 concentration was measured at 230 nm using a molar extinction coefficient of 72.4 (8). Spectrophotometric analyses were carried out with UVICON 940 (Kontron) equipped with a thermostated cell compartment and with a magnetic stirrer. O_2 in solution was measured polarographically (Gilson Oxygraph) using a 1.8 ml reaction chamber at 25°C unless stated otherwise.

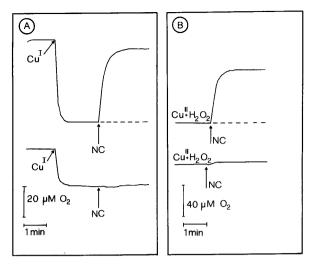
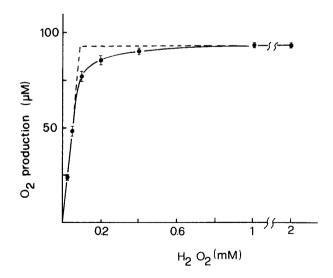

RESULTS

Fig 1A illustrates the autoxidation of 12O μ M Cu Cl in phosphate buffer, pH 7.4 in air-equilibrated solution. The oxidation stops when the amount of O_2 is consumed accounting for the oxidation of Cu^I to Cu^{II}, with production of H₂O₂. The unexpected finding is that about all the O₂ consumed is regenerated on adding 1 mM NC. The reaction is the same by substituting phosphate with the buffer MOPS at the same pH 7.4. Bathocuproinedisulphonate exhibits the same effect, but not ophenanthroline (OP), EDTA, DTPA, thiourea, histidine and ethylenediamine. Lowering the pH to 4 halts the regeneration of O₂ on adding NC (not shown). When the Cu^I autoxidation is done in the presence of O.1 mg/ml catalase no O₂ production is observed after the addition of NC. Autoxidation of Cu^I is known to proceed as in reactions 1-3)

1)
$$Cu^{I} + O_{2} \rightarrow Cu^{II} + O_{2}^{\bullet -}$$

2)
$$Cu^{I} + O_{2}^{\bullet-} + 2 H^{+} \rightarrow Cu^{II} + H_{2}O_{2}$$

Sum 3) 2
$$Cu^{I} + O_2 + 2 H^+ \rightarrow 2 Cu^{II} + H_2O_2$$


FIG. 1. (A) Polarographic measurements of oxygen in solution at 32°C in 50 mM K phosphate buffer, pH 7.4, following the addition of 120 μ M CuCl with subsequent addition of 1 mM NC at the arrow (upper trace). The same as above but with 0.1 mg catalase/ml added at zero time (lower trace). (B) 200 μ M CuCl $_2$ plus 100 μ M H $_2$ O $_2$ with subsequent addition of 1 mM NC, at the arrow, in the absence (upper trace) and in the presence (lower trace) of 400 μ M EDTA. The broken line is obtained by substituting NC with OP, EDTA, and other complexants (see text).

with also the transient production of 'OH from H₂O₂-Cu^I interaction (9-11). Because at end of oxidation the final products are only 2 CuII and H2O2, the addition of NC has been assumed to have shifted the reaction 3) to the left by binding Cu^I (see Eq. 8, below). On the basis of this conclusion, the addition of NC to H₂O₂ and CuII in phosphate buffer, pH 7.4, should display the same effect as that observed by adding NC at end of Cu^I autoxidation. This is the case as seen in Fig. 1 B. Again the other chelating agents assayed (OP, EDTA, DTPA, thiourea, histidine and ethylendiamine) cannot replace NC in promoting the O₂ formation. Yet, evolution of O₂ is prevented by EDTA (Fig. 1 B, lower trace) or DTPA (not shown) added before the NC in the ratio 2/1 with respect to Cu^{II}. By relating O₂ production with H₂O₂ concentration, it is found that the stoichiometry of the reaction is 1 mol of O₂ per mol of H₂O₂ reacted with 2 CuII (Fig. 2). Reaction 8) can be followed also by the formation of the colored (NC)₂Cu^I chelate. Fig. 3 A shows that the absorbance of Cu^{II} and of NC are not appreciably changed by adding H₂O₂, while the typical absorbance (λ max = 454 nm) of the cuprous-NC chelate is produced when the three reactants are added together. The molar ratio of (NC)₂Cu^I, determined spectrophotometrically, and the O_2 produced (Oxygraph), under the same conditions, has been found to be 2.1 in good agreement with the stoichiometry of reaction 8). The pH dependence of this reaction is shown in Fig. 3 B.

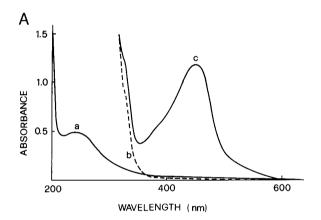
We studied also the H_2O_2 - Cu^{II} interaction in the absence of NC. Fig. 4 A and B show that the production of O_2 occurs in the absence of NC provided the concentration of H_2O_2 is higher than that used in the presence of NC. The O_2 production is strictly related to H_2O_2 concentration and is pH dependent. EDTA or DTPA added in twofold excess to the Cu^{II} concentration completely prevent the O_2 evolution (not shown). OP cannot replace NC in the Cu^{II} - H_2O_2 system. Since OP is a strong chelator of Fe^{II} , like NC is for Cu^I , we tried to substitute Cu^{II} with Fe^{III} and NC with OP, to see whether Fe^{III} could display the effect similar to that shown with Cu^{II} . No color of the Fe^{II} OP complex was seen, neither O_2 was produced in the Oxygraph. The reaction, thus, appears specific for the Cu^{II} - H_2O_2 -NC system. No other transition metals, however, have been assaved.

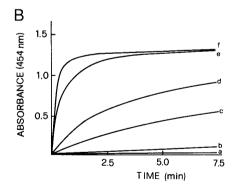
DISCUSSION

The data reported in this note indicate that Cu^{II} and H_2O_2 interact producing free O_2 in two distinct ways, one by adding the Cu^I specific chelator NC (or bathocuproinedisulphonate) the other by adding an excess of H_2O_2 in the absence of any chelator. The O_2 determined in the Oxygraph has been in any case a valuable tool to appreciate the occurrence of these two reactions. As a possible mechanism of interaction we suggest that H_2O_2 binds in a coordination site of Cu^{II} in the place of a water molecule, or of other ligands of affinity lower than H_2O_2 (i.e. buffer) as shown in reaction 4)

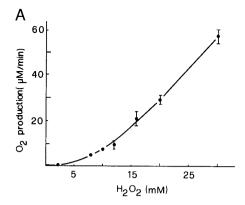
FIG. 2. Oxygen release as a function of H_2O_2 concentration. 2OO μM $CuCl_2$ was added with H_2O_2 (O.O25 to 2 mM) in 5O mM phosphate buffer, pH 7.4 , at 25°C. The O_2 produced on the addition of 1 mM NC was determined at the end of reaction by the Oxygraph.

4)
$$Cu^{II} + H_2O_2 \rightarrow Cu^{II}(O_2H)^- + H^+$$


5)
$$Cu^{II}(O_2H)^- \leftrightarrow Cu^{I\bullet}O_2H$$


6)
$$Cu^{I} O_2H + 2 NC \rightarrow (NC)_2Cu^{I} + O_2^{\bullet -} + H^+$$

7)
$$2 NC + Cu^{II} + O_2^{\bullet -} \rightarrow (NC)_2 Cu^{I} + O_2$$


Sum 8)
$$4 \text{ NC} + 2 \text{ Cu}^{\text{II}} + \text{H}_2\text{O}_2 \rightarrow 2 (\text{NC})_2\text{Cu}^{\text{I}} + \text{O}_2 + 2 \text{ H}^+$$

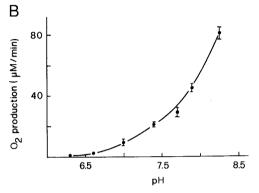

As shown in 5) the $Cu^{II}(O_2H)^-$ complex is assumed to be in equilibrium with the Cu^I -superoxide complex by the reversible exchange of an electron. The occurrence of such transient complexes have been proposed and discussed in the past (12, 13). On the addition of NC the equilibrium 5) is pushed to the right side with formation of the stable $(NC)_2Cu^I$ chelate and generation of the superoxide radical (react. 6). This radical then reduce another Cu^{II} to Cu^I (14) releasing free O_2

FIG. 3. (A) absorbance of (a) 200 μM CuCl $_2$ in the presence and in the absence of 100 μM H_2O_2 ; (b) 1 mM NC in the presence and in the absence of 100 μM H_2O_2 ; (c) 200 μM CuCl $_2$ plus 100 μM H_2O_2 added with 1 mM NC. (B) Time course of copper reduction by H_2O_2 , in the presence of NC (absorbance at 454 nm) at different pHs. The reacting mixture contained 200 μM CuCl $_2$ 100 μM H_2O_2 and 1 mM NC in 50 mM phosphate buffer at pH (a) 4.5, (b) 5.25, (c) 6.25, (d) 6.6, (e) 7.4, and (f) 8. Copper addition to start the reaction. In separate assays we have verified that the rate of formation and the 454 nm extinction of the cuprous-NC complex (CuCl added with fivefold excess of NC) are the same in the pH range 4–8.

FIG. 4. (A) Rate of oxygen production on the addition of 2OO μM CuCl₂ with different H_2O_2 concentrations (2–2O mM) in 5O mM phosphate buffer, pH 7.4. (B) 2OO μM CuCl₂ with 16 mM H_2O_2 in 5O mM phosphate buffer at different pHs. 25°C.

(react. 7). The overall reaction occurring in the presence of NC is represented in Eq. 8. Similarly to reactions 5) and 6), it has been reported that interaction of superoxide dismutase by H_2O_2 induces reduction of the copper of the enzyme and generation of $O_2^{\bullet-}$ (15).

A likely explanation of the O_2 production in the absence of NC with excess of H_2O_2 is presented in reactions 9-12).

9)
$$Cu^{II} + H_2O_2 \rightarrow Cu^{I*}O_2H + H^+$$

10) $Cu^{I*}O_2H + H_2O_2 \rightarrow Cu^{I} + O_2 + {}^*OH + H_2O$
11) $Cu^{I} + H_2O_2 \rightarrow Cu^{II} + {}^*OH + OH^- Cu^{II}$
Sum 12) $3H_2O_2 \rightarrow O_2 + 2 {}^*OH + 2 H_2O$

Reaction 10) is similar to the Haber-Weiss mechanism while reaction 11) is the copper-driven Fenton reaction. Altogether these reactions produce O_2 and a relevant amount of 'OH (reaction 12) with copper acting catalytically. The radical 'OH is expected to react with the excess of H_2O_2 (16) or dimerize (17) to regenerate part of H_2O_2 consumed. The notable production of hydroxyl radical could account for the reported higher deleteri-

ous effects of the $Cu^{II} + H_2O_2$ system to biological structures compared with the corresponding $Fe^{III} + H_2O_2$ system (3, 5, 18).

The activating effect of alkalinity, either in the presence and in the absence of NC (Fig. 3 B and 4 B), suggests the deprotonation of the Cu^{II} - H_2O_2 complex as a favourable condition.

A plausible alternative to the mechanism reported above could be the possible binding of H_2O_2 with two Cu^{II} ions, yelding the hydroperoxo-dicopper complex (19) and the formation of O_2 by two-electron transfer, without the intermediate production of O_2 .

An important outcome of the reported data is also that the determination of the ratio Cu^I/Cu^{II} cannot be done with NC (or with bathocuproinedisulphonate) in the presence of H_2O_2 unless the analysis is done at pH below 5 or the peroxide is previously removed.

ACKNOWLEDGMENTS

This work has been supported in part by grants of the MURST and by the Sigma Tau S.p.A. Pomezia.

REFERENCES

- Halliwell, B., and Gutteridge, J. M. C. (1990) Meth. Enzymol. 186, 1–85.
- Matsugo, S., Mizuno, M., and Konishi, T. (1995) Curr. Med. Chem. 2, 763-790.
- Aruoma, O. I., Halliwell, B., Gajewski, E., and Dizdaroglu, M. (1991) Biochem. J. 273, 601–604.

- 4. Spear, N., and Aust, S. (1995) *Arch. Biochem. Biophys.* **317**, 142–148
- Gutteridge, J. M. C., and Wilkins, S. (1983) *Biochim. Biophys. Acta* 759, 38-41.
- 6. Pecci, L., Montefoschi, G., Musci, G., and Cavallini, D., submitted for publication.
- Smith, F. S., and McCurdy, W. H. (1952) Anal. Chem. 24, 371– 373.
- Nelson, D. P., and Kiesow, L. A. (1972) Anal. Biochem. 49, 474–478.
- Hanna, P. M., and Mason, R. P. (1992) Arch. Biochem. Biophys. 295, 2O5 – 213.
- Gunther, M. R., Hanna, P. M., Mason, R. P., and Cohen, M. S. (1995) Arch. Biochem. Biophys. 316, 515–522.
- Burkitt, M. J., Tsang, S. Y., Tam, S. C., and Bremmer, I. (1995) *Arch. Biochem. Biophys.* 323, 63-70.
- 12. Brigelius, R., Spöttl, R., Bors, W., Langfelder, E., Saran, M., and Weser, U. (1974) *FEBS Lett.* **47**, 72–75.
- Masarwa, M., Cohen, H., Meyerstein, D., Hickman, D. L., Bakac, A., and Espenson, J. H. (1988) *J. Am. Chem. Soc.* 110, 4293– 4297.
- Koppenol, H., Van Buren, K. J. H., Butler, J., and Braams, R. (1976) *Biochim. Biophys. Acta* 449, 157–168.
- Bray, R. C., Cockle, S. A., Fielden, M., Roberts, P. B., Rotilio, G., and Calabrese, L. (1974) *Biochem. J.* 139, 43–48.
- Rush, J. D., Maskos, Z., and Koppenol, W. H. (1990) Meth. Enzymol. 186, 148–156.
- 17. Czapski, G. (1984) Meth. Enzymol. 105, 209-214.
- Yamamoto, K., and Kawanishi, S. (1989) J. Biol. Chem. 264, 15435-15440.
- Karlin, K. D., Ghosh, P., Cruse, R. W., Farooq, A., Gultneh, Y., Jacobson, R. R., Blackburn, N. J., Strange, R. W., and Zubieta, J. (1988) *J. Am. Chem. Soc.* **110**, 6769–6780.